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We study mode properties in multimode optical waveguides with parity-time (P7) symmetry. We find that
two guiding modes with successive orders 2m — 1 and 2m form a mode pair in the sense that the two components
of the pair evolve into the same mode when the loss and gain coefficient increases to some critical values, and
they experience P7 symmetry breaking simultaneously. For waveguides that in their conservative limit support
an odd number of guiding modes, a new mode with a proper order emerges upon the increase of the gain and
loss level, so that it pairs with the already existing highest-order mode and then breaks their P7 symmetry
simultaneously. Depending on the specific realizations of P7 -symmetric potentials, higher-order mode pairs
may experience symmetry breaking earlier or later than the lower-order mode pairs do.
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I. INTRODUCTION

One of the postulates of quantum mechanics is that every
physical observable corresponds to a Hermitian operator so
that the eigenvalues are guaranteed to be all pure real. However,
Bender and co-workers revealed that a non-Hermitian Hamil-
tonian respecting the so-called parity-time (P7) symmetry
can still exhibit an entirely real spectrum [1-3]. By definition,
a Hamiltonian is said to be P7 symmetric if it shares a
common set of eigenfunctions with the P7 operator. The
parity operator P, responsible for spatial reflection, is defined
through the operations P — —P, x — —x, while the time-
reversal operator 7 leadsto P — — P, x — x and to complex
conjugate i — —i. Given the fact TH = P?/2 + V*(x), a
necessary condition for the Hamiltonian to be P7 symmetric
is that the potential function V (x) should satisfy the condition
V*(—x) = V(x). However, the latter is only a necessary
condition for P7 symmetry, because the transition to a
complex spectrum, which is called P7 symmetry breaking,
appears upon the increase of the strength of the imaginary part
of the potential V (x).

Optical structures are suggested to be a powerful platform
for the implementation of P7 physics [4-8]. Spontaneous
‘PT symmetry breaking has been experimentally observed in
passive [9] and active [10] optical waveguide couplers. Since
then various P7 -symmetric structures were studied, including
nonlinear couplers [11-16], periodic [7,17-22] or truncated
[23-25] and defective lattices [26,27], pseudopotentials with
PT-symmetric [28,29] or inhomogeneous nonlinear terms
[30], as well as mixed linear and nonlinear lattices [31-33].

In this paper, with reference to waveguiding structures that
support a large number of localized modes, we put forward
the first systematic study on the P7 -symmetric properties
of higher-order modes. We find that modes with successive
order 2m and 2m — 1 form a mode pair (where m is a
positive integer) as the two components of the pair evolve
into the same mode when the gain and loss level increases
to some critical values, and they simultaneously break their
symmetry. Interestingly, in the case when the waveguides
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in their conservative limit accommodate an odd number of
modes, the increase of the gain and loss level creates a new
mode whose order is larger by one than the already-existing
highest-order mode, with which the new mode pairs and
they experience P7 symmetry breaking simultaneously. We
also find that, depending on the specific realizations of P7 -
symmetric potentials, the critical value of the gain and loss
coefficient beyond which the symmetry of the higher-order
mode pair breaks could be larger or smaller than those of
the lower-order mode pairs. It should be noted that the
simultaneous symmetry breakup of the fundamental and dipole
modes has been reported in Refs. [34,35]; however, generic
properties of higher-order modes have not been systematically
studied, and the latter is the aim of this paper.

II. MODEL

Let us consider the propagation of a laser beam in a
multimode waveguide that can be described by a Schrodinger-
like equation for the dimensionless field amplitude ¢,

g 1d%q
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Here x and z are normalized transverse and longitudinal
coordinates, respectively. The complex function V(x) de-
scribes the waveguide profile, whose real part represents
the landscape of the refractive index, while the imaginary
part represents the gain and loss modulations. While other
types of waveguide profiles have also been checked in our
study, for demonstration purposes, we assume in the following
Vix)y=p exp(—;—i)(l + iax), namely, a Gaussian waveguide
with a balanced gain and loss built into the waveguiding region.
The parameters p and d characterize the amplitude and width
of the waveguide, respectively, and « is the gain and loss
coefficient. The eigenmodes of the complex waveguides can
be found numerically by looking for the solution of Eq. (1) in
the form of ¢(x,z) = w(x) exp(ibz), where w = w, + iw; are
mode wave functions that are generally complex functions (in
the no-gain and no-loss limit, the wave function can be chosen
to be pure real), and b = b, + ib; are the mode propagation
constants. With a proper setting of p and d, the waveguide
in its conservative limit supports multiple modes, with the

— V(x)g. (1)
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FIG. 1. (Color online) Mode profiles for fundamental and dipole modes at different values of ««. The shaded region stands for the landscape

of the Gaussian waveguide; p = 2,d = 5.

first-order mode being nodeless in profile and the Nth-order
mode featuring N — 1 nodes. Without loss of generality, in
the following we set p = 2 and d = 5, and the corresponding
waveguide in its vanishing gain and loss limit supports six
modes. We then gradually increase the loss and gain coefficient
and watch the evolutions of these modes. The results are
presented below.

III. MODE PAIRS

Figure 1 shows the evolutions of fundamental and dipole
modes. When o = 0, the fundamental mode is bell shaped
and the dipole mode features two sharp peaks with a node
in between them [Fig. 1(a)]. However, with the increase of
o, the valley between the two peaks starts climbing steadily
and eventually, at @ = aép, the valley vanishes and the dipole
mode becomes bell shaped, taking exactly the same shape as
the fundamental mode [Fig. 1(e)]! If « increases further, two
asymmetric modes occur, with one mostly residing at the lossy
region [labeled “lossy” in Fig. 1(f)], and the other mostly at
the gain region [labeled “gain” in Fig. 1(f)].

The variations of propagation constants accompanying
such mode reshaping are shown in Fig. 2. As expected, the
propagation constants of the fundamental and dipole modes
remain pure real until the loss or gain level exceeds some
critical value. However, with the increase of «, the propagation
constants of two modes approach each other, and finally they
merge into one at o = oD This is the point that the dipole
evolves into a bell shape and attains the same shape as the
fundamental mode. Beyond this point, a pair of complex
conjugate b emerges (Fig. 2), corresponding to the gain and
lossy mode pair shown in Fig. 1(f).

The approaching of the two components of the mode
pairs can also be understood analytically if one performs a
perturbation analysis on Eq. (1). The substitution of g(x,z) =
w(x) exp(ibz) into the equation yields the following equation
for the stationary function, w(x):

—bw + Jw” + (V, +ipV)w =0, )
where the prime stands for d/dx, B = —ad?/2 is a constant,
and V,(x) is the real part of the potential (its particular form
is not important; it is essential that the imaginary part of the
potential is proportional to the derivative of the real part).
For small « (thus also small 8), the solution is looked for
perturbatively, as

w(x) = wo(x) + ifwi(x), 3)
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FIG. 2. (Color online) Dependence of the (a) real and (b) imag-
inary parts of the propagation constants of the first six modes on «;
p=2,d=>5.
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where functions wg and w; are real, the zero-order function
wy satisfies the usual linear Schrodinger equation,

—bwg + Fw{ + V,(x)w = 0, “)

and the first-order function w; satisfies the following inhomo-
geneous equation:

—bw; + Jwl + V,(x)w; = —V/(x)wy. 5)
Now, applying d/dx to Eq. (4), one obtains
—bwj + 5(wp) + Ve (x)wy = —V/(x)wp. (6)
Comparing Egs. (6) and (5) makes it obvious that
wi(x) o wy. @)

Thus, while fundamental and dipole modes differ signif-
icantly in their shapes (actually they are orthogonal to each
other), gradually increasing o from zero introduces an imagi-
nary part into the mode wave functions. Importantly, as Egs. (3)
and (7) show, the imaginary parts of the P7 -symmetric mode
wave functions are proportional to the first derivative of their
real part, with o being the proportional factor. Thus, the
fundamental modes that are initially symmetric now gain an
imaginary part that is antisymmetric, which is exactly like
that of the dipole modes. Similarly, the dipole modes that
are initially antisymmetric now gain imaginary parts that are
symmetric like fundamental modes. This prediction is well
collaborated by numerically results (see Fig. 3). In other words,
the increasing imaginary part of the potential leads to the
growing weight of the second mode in the field of the mode
that was initially “first,” and the growing weight of the first
mode in the field of the mode that was initially “second.”
Such modes are not orthogonal any more and actually they
start to approach each other. Thus, it is not surprising that,
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FIG. 3. (Color online) The real (solid lines) and imaginary
(dashed lines) parts of the wave functions for the first (a, b) and the
second (c, d) mode pairs, at o; = 0.02 (green lines) and o, = 0.04
(red lines); p =2,d = 5.
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FIG. 4. (Color online) Mode profiles for tripole and quadrupole
modes at different values of o; p =2,d = 5.

when the imaginary part grows to some critical value, the
fundamental and dipole modes take the same profiles and
coalesce.

The mode approach and finally simultaneous breakup of
PT symmetry for the dipole and fundamental modes are
also observed for tripoles and quadrupoles, for fifth- and
sixth-order modes, and so on. These are multihump modes
with several valleys between the humps. Interestingly, the
increase of « continuously lifts those valleys and weakens
the amplitude modulations [Figs. 4(a)-4(c)]. As a result,
when « increases to o), tripoles and quadrupoles evolve
into the same bell shape [Fig. 4(d)] and attain the same
propagation constant (Fig. 2). The fifth- and sixth-order modes
exhibit a similar scenario (Fig. 2). After also performing
the analysis on other types of P7-symmetric multimode
waveguides, we arrive at a conclusion that, in multimode
optical waveguides, guided modes with order 2m and 2m — 1
form a mode pair in the sense that the two components
of the pair evolve into the same mode at o™ and they
simultaneously undergo P7 symmetry breaking beyond that
point.

IV. MODE PAIRS IN WAVEGUIDES SUPPORTING
ODD-NUMBERED MODES

The proposed concept of a mode pair naturally leads
to the following question: what happens if a waveguide
initially supports an odd number of guided modes, so that
its highest-order mode, say, with order 2m — 1, does not have
a chance to form a pair? Our thorough studies reveal that the
increase of « results in the formation of the 2m-order mode,
which pairs with the already existing (2m — 1)-order mode,
and eventually, like other canonical mode pairs, this new
pair enters the symmetry-broken phase. Figure 5 illustrates
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FIG. 5. (Color online) Dependence of mode propagation con-
stants on o for waveguides with (a,b) p = 2,d = 0.8 and (c,d) p = 2,
d = 2. Insets in (a) and (c) show the mode profiles corresponding to
the circles in the spectrum.

the spectrum when the waveguide in its conservative limit
accommodates only one [Fig. 5(a)] and three [Fig. 5(c)] guided
modes, respectively. The figure shows that, at the early stage
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FIG. 6. (Color online) Propagation simulation of the dipole mode
at (a) a = 0.041(<aD), and of the mode bifurcating from the
fundamental-dipole mode pair at (b) « = 0.175(>a{"). Propagation
simulation of the quadrupole mode at (¢) « = 0.175(<a?), and of
the mode bifurcating from the tripole-quadrupole mode pair at (d)
a=022(>a?);p=2,d=5.
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FIG. 7. (Color online) (a) Real [Re(V)] and imaginary [Im(V)]
parts of the waveguide profile, with Re(V) = pexp(x2/d?) for
all x, while Im(V) = ix/|x|o for x € (—w,w), and O otherwise.
(b) Dependence of «, of three mode pairs on w. The inset is the
enlargement of the dashed-box portion. The dependence of mode
propagation constants on « is shown for (c) w = 2.2 and (d) w = 7.4.
In all the cases, p =2,d = 5.

of the increasing «, the fundamental [Figs. 5(a) and 5(b)] or
tripole [Figs. 5(c) and 5(d)] mode evolves by itself without
forming a pair with other modes. Interestingly, however, when
o increases to some value, a new guided mode featuring
two [Fig. 5(a)] or four [Fig. 5(c)] humps appears, which is
recognized as a dipole or quadrupole mode. The new mode
pairs with the already existing fundamental or tripole mode,
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and they experience a simultaneous P7 symmetry breaking
with the further increase of «.

V. P7T-SYMMETRY-BREAKING POINT OF DIFFERENT
MODE PAIRS

Finally we compare the P7 -symmetry-breaking point for
different mode pairs. In canonical waveguiding geometries
such as the Gaussian waveguides considered above, one finds
that, with the increase of gain and loss coefficient, the lowest-
order mode pair first breaks symmetry, then the higher-order
pairs break successively. This property is clearly seen in
Figs. 2 and 5, as o) <o <o <-... Thus, for some
specific gain and loss level, while the lower-order mode pairs
are already symmetry broken, the higher-order pairs might
still remain their symmetry. Figure 6 shows the propagation
simulation for fundamental and dipole [Figs. 6(a) and 6(b)]
and tripole and quadrupole [Figs. 6(c) and 6(d)] pairs. Note
that a same o value (@ = 0.175) is used in Figs. 6(b) and
6(c). However, as o) < 0.175 < a?, the modes bifurcating
from the fundamental and dipole mode pair experience either
amplification [Fig. 6(b)] or decay during propagation, while
the modes in the tripole and quadrupole pair propagate in a
stationary fashion [Fig. 6(c)]. We note that the fact that the
symmetry of the tripole is maintained while that of the two
lower-order modes is already broken was indicated in [34].

One might explain that the postponement in the symmetry
breaking of the higher-order mode pair is due to the fact that
higher-order modes are more spatially extended, and thus the
effective gain and loss strength they feel is weaker than that of
the lower-order pairs; therefore, a larger gain and loss level is
required to drive higher-order pairs into symmetry-breaking
phases (the effective gain and loss strength is given by
the spatially weighted average of the imaginary part of the
complex potential over the modal field profile). However, we
find that this argument is not always true, and the higher-order
mode pairs may also break symmetry earlier than lower-order
pairs do. A profound example is shown in Fig. 7, where the real
part of the potential is still a Gaussian one, while the gain and
loss modulation is a step function defined within a finite region
with width being 2w [Fig. 7(a)]. We examine the dependence
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of symmetry-breaking points for different mode pairs of the
structure on the width of the gain and loss region, w, and the
result is shown Fig. 7(b). The figure shows that, when the gain
and loss region is narrow (compared with the width of the mode
profiles), the breaking points of all mode pairs are nearly the
same; with increasing w, it becomes evident that higher-order
mode pairs break symmetry later than lower-order mode pairs
do [see, for example, Fig. 7(c) for w = 2.2]. Interestingly,
when w is increased further (w > 6.4), the third mode pair
is found to first break symmetry, followed by the first mode
pair, and then the second mode pair [Fig. 7(d)]. This situation
remains true even when w — oco. Clearly, for such a very
spatially extended gain and loss region, the effective gain and
loss strengths for all mode pairs are the same, and still, different
mode pairs break symmetry at different points. Finally, we
should mention that the observed property (the mode pairs
of higher orders break symmetry earlier than those of lower
orders do) is not caused by the the piecewise nature of the
imaginary potential considered in Fig. 6, and a similar picture
is observed for other smoothly varying potentials, too.

VI. CONCLUSIONS

We have put forward a systematic study on the properties of
PT symmetry for multimode waveguides. We have revealed
that waveguide modes with successive orders 2m — 1 and 2m
form a mode pair as they gradually evolve into the same
mode and experience symmetry breaking simultaneously. For
waveguides that support an odd number of guided modes,
the increase of the gain and loss coefficient gives birth to a
new higher-order mode which pairs with the already existing
highest-order mode, and then goes to a symmetry breaking
together. Depending on the specific realizations of P7-
symmetric potentials, the breaking point of the higher-order
mode pair can be later or earlier than those of the lower-order
pairs.
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